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Abstract

The plane problem of the sliding contact of a punch with an elastic foundation when there is friction and wear is considered.
Assuming the existence of a steady solution in a moving system of coordinates, relations are derived between the sliding velocity,
the wear, the contact stresses and the displacements for an arbitrary dependence of the wear rate on the contact pressure. Taking
into account the presence of a deformation component of the friction force, an equation is written for the balance of the mechanical
energy for the punch - elastic base system considered. It is shown that the equality of the work of the external force in displacing
the punch to the losses due to friction and the change in the shape of the foundation due to wear is satisfied when the work done by
the contact stresses on the increments of the boundary displacements is equal to zero, and the frictional losses must be determined
taking into account the non-uniformity of the distributions of the shear contact stresses and the sliding velocity in the contact area.
Two special cases of the foundation in the form of a wide and narrow strip are considered, for which the total coefficient of friction
is calculated, taking into account the deformation component of the friction force.
© 2007 Elsevier Ltd. All rights reserved.

The resistance to the relative motion of bodies in contact due to their irreversible deformation was apparently
calculated for the first time in Ref. 1, when analysing a method of determining the hardness to scratching. Later, the
asymmetry of the contact pressure profile was regarded as the reason for the occurrence of a rolling friction force.2,3

A fairly complete review of research on the deformation component of the friction force can be found in Ref. 4.
According to existing results,5,6 when elastic bodies are in contact under conditions of sliding and wear, the contact

pressure profile is asymmetrical, which also leads to the occurrence of a deformation component of the friction force.
In this connection, the problem arises of satisfying the balance of mechanical energy, under the condition that it is not
dissipated in the elastic body.

1. Formulation of the problem and fundamental relations

We will consider the two-dimensional problem for a deformable foundation with a rectilinear boundary �, on which
an absolutely rigid smooth punch slides (see the Fig. 1). We will connect with the foundation a system of coordinates
���, the � axis of which is parallel to the undeformed boundary � and directed along the motion of the punch. The
external load on the punch is specified by a shear component T and a normal component P, directed along the � axis and
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Fig. 1.

opposite to the � axis, respectively (see the Fig. 1). It is assumed that an external moment is applied to the punch, which
gives it a plane-parallel displacement without rotation. The interaction of the punch and the foundation is accompanied
by friction, which leads to wear of the foundation.

We will use the Lagrangian description of the deformations7 and we will denote by ũ(�, �) and ṽ(�, �) the
displacements of the boundary �, and we will denote the contact stresses by

The area of contact of the punch with the foundation will be represented by the segment [�1(t), �2(t)]. The argument
t here denotes the dependence of quantities on time. It is assumed that the rate of linear wear W̃ of the foundation is
related to the contact pressure q̃2 and the velocity Ṽ of relative sliding of the boundaries of the punch and the foundation
by the wear law

(1.1)

in which F (q̃2, Ṽ ) is a known function.
We will take a certain point O on the boundary of the punch and connect with it a moving system of coordinates

OXY, in which the X and Y axes are directed along the � and � axes respectively (see the Fig. 1). We will define the
shape of the punch by the equation

(1.2)

where g(X) is a given continuous function, and g(0) = 0. We will denote by �0(t) the Lagrangian coordinate � of the
point of the boundary � coinciding with the point O at the instant t, and we will assume that �0(t) = V0t, 0 < V0 = const.
In the deformed state, this point has the coordinate

Here, the following expression holds for the velocity of motion of the punch in the system of coordinates ���

(1.3)

We will introduce one more moving system of coordinates oxy, the origin of which coincides with the point �0(t)
of the coordinate x� (see the Fig. 1). The coordinates x and � at each instant of time are related by the equality

(1.4)

In what follows we will consider the case of the steady motion of the medium of the foundation in the system oxy.2,8

The corresponding boundary displacements in this system, taking (1.4) into account, have the form

(1.5)
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Also, for the system oxy we will introduce contact stresses q1 and q2, the dimensions a and b of the contact area, the
wear W and the velocity V of relative sliding of the boundaries of the punch and the foundation

(1.6)

Relations (1.5) enable us to obtain the velocity V. In fact, by definition

If we represent the derivative in this equation using Eq. (1.5) in the form

and take expression (1.3) into account, it turns out that Ṽ (�, t) = V0 + V0u
′(� − �0(t)), or

(1.7)

A similar result was obtained previously in Ref. 8 when considering the deformation of a Winkler foundation by a
rolling cylinder.

We now take a certain point on the boundary � with coordinate � ∈ [�1(t), �2(t)]. Suppose the coordinate of this
point in the deformed state of the foundation lies at a distance X from the point O, so that, taking relations (1.4) and
(1.5) into account, we have

(1.8)

The condition for a punch, the shape of which is described by Eq. (1.2), to be in contact with the foundation is expressed
by the equality (see the Fig. 1)

which, taking relations (1.5), (1.6) and (1.8) into account, can be given the form

(1.9)

Note that the contact condition (1.9) corresponds to the refined formulation of the contact problem, which takes
into account the tangential boundary displacement in the boundary condition for a normal displacement.9,10

The wear W occurring in condition (1.9) is related to the contact pressure q2 by virtue of wear law (1.1). In fact, for
fixed �, by relations (1.4) and (1.6)

Hence, taking Eq. (1.1) into account, we can write the chain of equalities

where tx = (� − x)/V0, and as a result we obtain

(1.10)

Below we will use the linear theory of deformations,7 within the framework of which it is assumed that the quantities
|u′(x)|, |v′(x)| are of the order of smallness � � 1, and quantities of higher orders of smallness are omitted. The derivative
W′(x) will be assumed to be of the same order of smallness. These assumptions enable us, if necessary, to drop quantities
of higher order of smallness than the other quantities in the equations. In particular, taking into account the fact that
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where x̄ lies between 0 and x, we can represent the contact condition (1.9) in the simplified form

(1.11)

Note that the use of the contact condition (1.11) instead of (1.9) leads to corrections O(�) to the solution of the
corresponding contact problem.10

The relations obtained above do not assume any particular behaviour of the medium of the foundation. However,
the following description will be concerned with an elastic foundation.

2. Energy relations

For small values of |g′(x)|, the forces acting on the punch must satisfy the following equilibrium conditions2,5

(2.1)

where

(2.2)

Q1 is the total friction force, and � is the deformation (mechanical) component of the friction force, related to the
asymmetry of the contact- pressure distribution.2,4,5 In the case of an elastic foundation, this asymmetry is due to friction
on the contact and wear of the foundation.6 Further analysis will involve considering the deformation component of
the friction force, and hence the quantity � is retained in Eq. (2.1) despite the fact that it has a higher order of smallness
compared with Q1.

Taking into account the assumption that the motion of the medium of the foundation in the moving system of
coordinates oxy is independent of time, we will assume that the displacement ũ(�0(t), t) of a point coinciding with the
point O of the punch boundary also does not change with time, i.e.

(2.3)

so that, according to expression (1.3), V* = V0. Below, Eq. (2.3) will be confirmed for a foundation in the form of an
elastic strip.

For a power MT of the external shear force T, taking into account the equality V* = V0 and the first relation of (2.1),
we have

(2.4)

where M1 is the power of the total friction force and M� is the power of the deformation component of the friction
force. Expression (2.4) means that, if the losses due to friction are defined in terms of the work of the total friction
force, as is done in the case of the friction of solid bodies, the work of the external force T is only partially expended in
covering friction losses. In relation to the problem of where the remainder M� of the power MT is expended, whereas
there is no dissipation of energy in the elastic foundation, we will determine the losses due to friction taking into
account the non-uniformity of the distributions of the shear stress q1 and the velocity V of relative sliding in the contact
area. Moreover, by analogy with the consideration of the contribution of the friction force of plastic deformation to
the deformation component,4 we will take into account the losses due to the irreversible change in the shape of the
boundary of the foundation due to its wear.

Using relation (1.7), we will represent the rate of loss of energy due to friction in the form

(2.5)
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The rate of loss of energy due to the change in the shape of the foundation due to its wear is given by the equation

(2.6)

since q̃2dW̃ is the elementary work for a displacement dW̃ of the boundary of the foundation. If, in relation (2.6), we
change from the variable � to x, using equality (1.4), by taking relations (1.1), (1.10) and (1.11) and the definitions of
the quantities � and M� into account, we can write

(2.7)

By the law of conservation of energy, the work of the external force T is dissipated in friction and a change in the
shape of the foundation due to its wear, i.e. the following relation must be satisfied

(2.8)

Expressions (2.4), (2.5) and (2.7) enable us to reduce relation (2.8) to the equality

(2.9)

the validity of which must be established using equations describing the deformation of the foundation. Below, we will
do this for the case of a foundation in the form of an elastic strip.

Remarks.

1◦. The equality I - J = 0, equivalent to (2.9), can be interpreted as the equality to zero of the total work of the stresses
�xy = q1, �y = −q2, distributed over the contact area, for corresponding increments du = u′dx, dv = v′dx of the
boundary displacements. A similar construction is used when formulating the virtual principle work.7

2◦. Equality (2.9) enables us to draw the physically natural conclusion that the deformation component � of the friction
force for an arbitrary shape g(X) of the punch when there is no friction and wear on the contact is equal to zero. In
fact, when q1(x) ≡ 0, W(x) ≡ 0, Eq. (2.9) and the contact condition (1.11), together with the definition (2.2), give
I = J = 0 and � = J, i.e. � = 0.

3. The case of an elastic strip

Suppose the foundation is an elastic strip, the lower boundary of which is attached to an absolutely rigid substrate.
Then, in the quasi-static approximation (see Ref. 11, Chapter 2)

(3.1)



I.A. Soldatenkov / Journal of Applied Mathematics and Mechanics 71 (2007) 632–642 637

where m = 	E/[2(1 − 
2)], � = (1 − 2
)/[2(1 − 
)]

(3.2)

E and 
 are Young’s modulus and Poisson’s ratio, and h is the width of the strip. Here and henceforth i, j = 1, 2.
Changing in Eq. (3.1) from the variable � to x, according to Eq. (1.4) and taking into account Eqs. (1.5) and (1.6),

we can write the following relations

(3.3)

the form of which immediately enables us to establish the validity of assumption (2.3) made above. For a further
analysis of these relations, denoting by H [−a, b] the class of functions which satisfy the Hölder condition in the
segment [−a, b],12 we will assume that

(3.4)

In order to check equality (2.9) we will obtain from relations (3.3) expressions for the derivatives u′(x) and v′(x).
Direct differentiation with respect to x of the right-hand sides of equalities (3.3) does not give the required result, since,
according to relations (3.2), the derivatives of the kernels kij(z) are represented by diverging integrals, which do not
enable us to introduce the operation of differentiation under the integral signs in relations (3.3).13 We will therefore
convert these kernels, excluding the singularities. We have

We will define the kernels

(3.5)

so that

(3.6)

Using expressions (3.5) it can be shown that the kernels lij(z) enable us to carry out differentiation under the sign of
the corresponding integrals. Moreover, with condition (3.4), using the Poincaré - Bertrand formula,12 we can establish
the relation (everywhere henceforth the integration is carried out over the segment [−a, b])
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All this enables us, by replacing kij(z) by lij(z) in relations (3.3), according to equalities (3.6), to differentiate the
right-hand sides of the relations obtained with respect to x with the introduction of corresponding operations under the
integral signs13 and, as a result, we arrive at the following expressions

(3.7)

in which, with the formal use of the idea of the �-function, we have introduced the notation

(3.8)

Note that when h → ∞ relations (3.7), convert, as they should do, into the well-known relations for an elastic
half-plane.14

We will now consider equality (2.9) and replace the derivatives u′(x) and v′(x) in them using formulae (3.7). The
result can be represented in the form

(3.9)

Taking expressions (3.8) for the kernels njj(z) into account, in which the functions l′jj(z) are continuous and odd,

using the Poincaré - Bertrand formula12 we can change the order of integration in the definition of S
(jj)
kk and establish

that S
(jj)
kk = −S

(jj)
kk , i.e. S

(jj)
kk = 0. Carrying out similar action with respect to the quantity S

(12)
12 , taking into account

the evenness of the continuous function l′12(z) in Eq. (3.8) we obtain S
(12)
12 = S

(12)
21 . The last two equations indicate the

correctness of equality (3.9), and, consequently, Eq. (2.9) also. According to the discussion in Section 2, this means
that for a foundation in the form of an elastic strip the power balance (2.8), which expresses the law of conservation of
energy, holds.

We will now consider two special cases: a wide and marrow strip of width h. To be specific we will assume that the
contact stresses q1 and q2 for the chosen direction of motion of the punch (see the Fig. 1) are related by the Amonton
- Coulomb law4

(3.10)

in which 
 is the coefficient of friction and �0 is the adhesive (molecular) component of the friction. In this case the
equilibrium conditions (2.1) take the form

(3.11)

(T0 is the total adhesive component of the friction force).
Introducing the total coefficient of friction 
*, which takes into account the deformation components � and � of

the external forces T and P, so that

(3.12)

after substituting expressions (3.11) into Eq. (3.12) we obtain

(3.13)
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4. A wide strip

Suppose the following asymptotic form (a + b)/h → 0 holds for the strip. In this case relations (3.7) take the form15

(4.1)

where the quantity c12 depends only on Poisson’s ratio 
. The punch will be assumed to be parabolic: g(x) = x2/(2R),
where R is the radius of curvature. We will assume the wear law (1.1) to be linear: F(q2, V) = kwq2V, so that, by relations
(1.7) and (1.10), when |u(x)| = O(�) � 1 we obtain

(4.2)

To solve the corresponding wear-contact problem we differentiate the contact condition (1.11) with respect to x and
eliminate the derivatives v′(x) and W′(x) from it using Eqs (4.1) and (4.2). Then expressing the stress q1 in terms of
q2, using the friction law (3.10), we obtain the following equation for the contact pressure

(4.3)

where

The solution of Eq. (4.3) which satisfies condition (3.4) has the form6,12

(4.4)

Here the following equality must be satisfied

(4.5)

Integration of expression (4.4) over the contact area, taking into account definition (2.2) of the quantity Q2 gives one
more equality

(4.6)

Eqs. (4.5) and (4.6) serve to find the unknown dimensions a and b of the contact area.
Solution (4.4) enables us to obtain the deformation component � of the friction force, defined by the last formula

of (2.2). After evaluating the corresponding integral, bearing equality (4.4) in mind, we have

(4.7)

Moreover, it follows from Eq. (4.5) that

(4.8)

The sum a + b in expressions (4.7) and (4.8) depends on the unknown quantity Q2, by virtue of relation (4.6), and
hence the substitution of these expressions into the second equality of (3.11) enables us to change to an algebraic
equation defining Q2 in terms of the known load P. Using the solution of this equation we can establish a relation
between the quantities �, �g and P on the basis of equalities (4.7) and (4.8), after which expression (3.13) enables us
to determine how the total coefficient of friction 
* depends on the load P.
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In the special case when the strip degenerates into a half-plane (h−1 = 0), there is no adhesive component of the
friction (�0 = 0) and 
 � 1

(4.9)

As the expression obtained shows, the value of 
* turns out to be less than the coefficient of friction 
. This is due to
the fact that, in the case considered, according to equality (4.5), the difference a-b is positive, i.e. the contact pressure
profile is shifted in a direction opposite to the direction of motion of the punch.6

5. A narrow strip

Suppose the asymptotic form (a + b)/h → ∞ is satisfied for the strip. In this case integral relations (3.1) degenerate
into algebraic relations, corresponding to the Winkler model.11,16 For a moving system of coordinates oxy these
relations have the form

(5.1)

where

Note that relations (5.1) are not asymptotically accurate – they break down in the neighbourhoods O(h) at the ends of
the contact area,11,16 in view of which we must separately verify equality (2.9) for relations (5.1). We will carry out
this check assuming that the contact pressure has zero values at the ends of the contact area:

(5.2)

and that a friction law of general form q1(x) = �(q2(x)) holds, where �(q2) is a known function. We substitute the first
relation of (5.1) into expression (2.9) for I and we integrate the integral obtained by parts, taking into account the last
three equalities. As a result we can write the equality

which denotes that I = 0. We can similarly establish the equality J = 0, and, consequently, also the required equality
(2.9).

We will obtain a solution of the wear-contact problem for a narrow strip, assuming the wear law (1.1) to be linear:
F(q2, V) = kwq2V. Differentiation of the contact condition (1.11) with respect to x and the use of expressions (4.2) and
(5.1) for W′(x) and v(x) enables us to obtain the following differential equation for the contact pressure

(5.3)

The solution of Eq. (5.3) which satisfies condition (5.2) has the form

(5.4)

Here the following equality must be satisfied

(5.5)

Integration of expression (5.4) over the contact area, taking into account definition (2.2) of the quantity Q2, gives
one more equality

(5.6)

Equalities (5.5) and (5.6) serve to obtain the unknown dimensions a and b of the contact area.
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We will further assume that the punch is parabolic: g(x) = x2/(2R). Relations (5.4) and (5.6) then take the form

(5.7)

(5.8)

Substitution of the solution of (5.7) into definition (2.2) of the deformation component � of the friction force, taking
into account the first equality of (5.8), enables us to obtain the expression

(5.9)

Moreover, we have directly from the second equality of (5.8)

(5.10)

The dimensions a and b of the contact area, present in expressions (5.9) and (5.10), are expressed in terms of the
unknown quantity Q2, by virtue of relations (5.8), and hence by substituting these expressions into the second equality
of (3.11) we can arrive at a transcendental equation, defining Q2 in terms of the known load P. Using the solution of
this equation we can establish a connection between the quantities �, �g and P on the basis of Eqs. (5.9) and (5.10),
after which, expression (3.13) enables us to determine how the total coefficient of friction 
* depends on the load P.

In the special case when the wear is small (�(a + b) → 0) and there is no adhesive component of the friction (� = 0),
we have

Unlike expression (4.9), here the value of 
* turns out to be greater than the coefficient of friction 
. This is due
to the fact that, in the case considered, according to the second equality of (5.8), the difference a-b is negative, i.e. the
profile of the contact pressure is shifted in the direction of motion of the punch.

6. Conclusions

1. We have obtained a relation (1.7) between the sliding velocity and the tangential boundary displacement, and also
relation (1.10) between the wear and the contact pressure for an arbitrary wear law.

2. We have set up Eq. (2.8) of the balance of mechanical energy, which takes into account the losses due to friction
and the irreversible change in the shape of the boundary of the foundation as a result of wear.

3. We have shown that the balance of the mechanical energy is satisfied under condition (2.9) that the work of the
contact stresses for increments of the boundary displacements is equal to zero, and the frictional losses must be
determined taking into account the non-uniformity of the distributions of the shear contact stresses and the sliding
velocity in the contact area.

4. We have shown that equality (2.9) is satisfied for a foundation in the form of an elastic strip of arbitrary width.
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